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Early in life and without special training, human beings discern
resemblance between abstract visual stimuli such as sketch
drawings and the real-world objects they represent. We used
this capacity for visual abstraction as a tool for evaluating deep
neural networks (DNNs) as models of human visual perception.
Contrasting 5 contemporary DNNs, we evaluated how well each
explains human similarity judgements among line drawings of
recognizable and novel objects. For object sketches, human
judgements were dominated by semantic category information;
DNN representations contributed little additional information.
In contrast, such features explained significant unique variance
perceived similarity of abstract drawings. In both cases, a
vision transformer trained to blend representations of images
and their natural-language descriptions showed the greatest
ability to explain human perceptual similarity—an observation
consistent with contemporary views of semantic representation
and processing in the human mind and brain. Together the
results suggest that the building blocks of visual similarity may
arise within systems that learn to use visual information, not
for specific classification, but in service of generating semantic
representations of objects.
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Introduction
A central question for theories of visual perception and
cognition concerns the nature of the features the visual
system deploys to represent its inputs and of the processes
it uses to assemble these into a recognized object in the
world. Much work in this area has understandably focused
on explaining visual perception/recognition of naturalistic
inputs, such as color photographs of objects or scenes.
Yet human vision is also remarkable in its capacity to
perceive, recognize, and make inferences about even highly
abstract stimuli that depart radically from the veridical visual
structure of the real world, from cave drawings to illustrations
in children’s books to expressionist paintings to figures in
scientific papers.

Specifically, the ability to discern resemblance between
drawings and real-world objects develops early and without
special training in infancy: children as young as 5 months
discern the similarity between a photograph and line drawing
depicting the same face (1, 2), and drawing recognition is
generally robust in childhood (3, 4). It also appears special to

human cognition: adult chimpanzees can generalize learned
responses across photographic depictions of object classes,
but do not extend this generalization to line drawings or
other abstract depictions of the same objects (5); pigeons,
despite their famed capacity for visual recognition, show the
same pattern (6). Drawings thus offer a useful opportunity
for testing different proposals about the building-blocks of
human visual cognition: whatever features and processes the
visual system develops to support perception and recognition
of objects in the real world must also extend to explain
perception and recognition of abstract object depictions in
drawings and other visual media.

The current paper uses people’s ability to perceive
similarities between simple line drawings as a tool for
evaluating a class of vision models that has garnered
sustained interest across the related disciplines of machine
vision, visual neuroscience, and visual cognition, namely
deep neural networks (DNNs). Such models have been
applied to several problems including image captioning (7),
answering questions about a given image using natural
language (8, 9), generating sketches (10), and even solving
entire families of visual tasks (11). Cognitive science and
visual neuroscience, however, have focused primarily on
deep image classifiers: models trained via gradient descent to
assign objects shown in millions of photographs into one of
1000 possible mutually-exclusive categories (12–14). From
the perspective of human visual cognition, such models are
interesting because they generalize well to images depicting
new examples of the trained classes (15) and thus offer
a potential mechanism for understanding key phenomena
such as recognition invarance across category exemplar,
viewpoint, spatial location/orientation, lighting conditions,
etc., and how these abilities may be acquired via learning
from the visual structure of the environment. From the
perspective of neuroscience, the models are interesting partly
because the internal representations they acquire resemble, in
certain ways, the patterns of neural activity evoked by visual
stimuli in the ventral processing streams of both humans and
nonhuman primates (12, 13, 16–18).

Perhaps surprisingly, some deep image classifiers, de-
spite being trained exclusively on photographs, nevertheless
acquire internal representations that capture a degree of
similarity between sketches and photographs depicting the
same class of objects (19, 20). In learning to categorize
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photorealistic images, such models thus appear to acquire
feature representations and mechanisms for combining them
that extend, at least to some extent, to abstract depictions of
objects like those appearing in line drawings. Taken together,
these observations suggest that deep image classifiers may
provide a useful tool for connecting computational, cognitive,
and neuroscientific accounts of visual object processing.

Yet there are also many reasons for questioning the
utility of DNN image classifiers as scientific models of
human visual cognition:

The features DNNs acquire are opaque. It is notoriously
difficult to understand precisely what information in the input
neural networks models exploit across different layers in
exhibiting the behaviors that they do. While some researchers
have proposed heuristics for tackling this question (21, 22)
and others have investigated inductive biases in such models
(23, 24), it remains unclear exactly what kinds of visual
features DNNs acquire. Besides DNNs, machine vision also
offers many more transparent techniques for characterizing
the ’low-level’ visual information expressed in an image or
drawing, and little work has assessed whether DNN-derived
features capture important aspects of human perception
beyond those already expressed by these other easier-to-
comprehend methods (25).

There are many different DNN architectures and
training methods. Contemporary interest in DNNs as models
of human perception began with convolutional networks (26),
which represented a step change in classification accuracy
while also possessing some resemblances to the object-
processing visual stream in the human brain–for instance, an
organization in which both feature complexity and receptive
field size increase from earlier to later processing stages.
Today, however, newer architectures that bear little clear
relation to ventral visual stream often perform better on
benchmark tasks (e.g. transformer models (27)); recently-
introduced heuristics for training models (e.g. contrastive
methods such as CLIP (28)) appear to have a larger effect
on their behavior than does the architecture per se; and
models with qualitatively distinct architectures appear to
capture macro-scale neural patterns in ventral visual stream
about equally well (29), despite behaving according to quite
different principles. It is unclear whether these variants differ
in their utility for understanding human visual perception.

Human vision supports more than just object classifi-
cation. Whereas DNNs classifiers can categorize natural
images accurately, human vision yields up much richer
information about its inputs (30), including other semantic
information about the objects beyond its subordinate or basic
category label; the parts that go together to compose it; its
orientation in space; its size; how one might interact with it,
etc. Such information may importantly constrain the visual
similarities that people discern amongst stimuli, in ways
that various current DNN image classifiers may or may not
capture (31).

It is not known whether DNN representations capture
the visual structure that humans perceive. While
considerable research has evaluated the ability of DNNs to

generalize their classification behavior, and have assessed
similarity between model and neural structure, comparatively
less work has assessed whether/how representations that arise
in such models explain the similarities that people perceive
in images (30). Where such studies have been conducted,
they have focused on representation of photographic stimuli
like those that constitute the model’s training environment
(12, 32, 33) and it is not clear whether similar results would
obtain for perception of more abstract and out-of-distribution
stimuli such as sketches.

These considerations raise three key questions about the
degree to which DNNs provide useful scientific models of
human visual object perception, which are the focus of this
paper:

1. Are the internal representations/features acquired
by DNNs sufficient, either alone or in combination with
other common expressions of visual structure, to explain the
similarities that people detect amongst abstract depictions of
objects (such as line drawings)?

2. Do the internal representations/features acquired
by DNNs merely recapitulate other better-understood kinds
of visual features, or do they capture aspects of perceptual
similarity beyond such features?

3. Do different model architectures and/or training
procedures offer different answers to these questions?

To answer these questions, we adopt an approach similar
to that taken by Jozwik and colleagues (34), who sought to
explain the contributions of categorical and visual features,
in addition to DNN features, towards explaining human-
perceived similarities amongst photographs of objects.
Their work evaluated two convolutional DNN architectures,
AlexNet and VGG-16, across different layers. To assess
human-perceived structure they had participants list visual
features such as parts, colors, or shapes, and also provide
category labels, such as ‘elephant’, ‘animal’, or ‘natural’, for
their photographs. They then tested whether these human-
generated features reliably predicted judgements of similarity
amongst their photographs. They found that deeper layers of
the DNNs outperformed visual features, but that categorical
features outperformed both.

Our work builds on these results, and those of Fan
and colleagues (35), by considering which features best
explain and predict the similarities that humans perceived
amongst line drawings. This focus extends prior work
in two nontrivial ways. The first is simply that there
exist a variety of computational techniques for measuring
similarities between sketch images that do not rely solely
on human-generated propositional descriptions of structure.
Each such technique quantifies a kind of similarity between
pairs of sketches, which might then provide a basis for
guiding human perceptual decisions. The use of drawings
allows us to investigate these metrics alongside features
extracted from DNNs and human-generated labels when
understanding the factors governing perceptual similarity.

Second, as noted above, drawings represent a test case
for out-of-sample generalization that is important for many
aspects of human visual communication. It may be that,
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by virtue of learning from very large sets of naturalistic
images, DNNs acquire a kind of domain-general basis set
for expressing visual information that then naturally capture,
without specific training, perceived similarities amongst
sketches and other abstract depictions of objects. If so,
mechanisms embodied in DNNs are sufficient to explain
the human ability to cope with abstract visual depictions.
Alternatively, it may be that the features acquired by DNNs
are insufficient to explain the structure that people discern
amongst drawings without special training/tuning, or that
some architectures fare better than others, or that other
features beyond those expressed in DNNs provide a better
or more transparent account of the central features.

In the experiments that follow, we began by estimating
the similarities that people discern amongst various line
drawings using a triadic comparison or triplets task in which
participants must decide which of two sketch images is
most similar to a third reference image. From many such
judgments, the component sketches can be embedded within
a low-dimensional space such that the Euclidean distance
between pairs of points relates to the probability that the
two items will be selected as "more similar" relative to some
arbitrary third image (36). The resulting embeddings thus
encode a low-dimensional perceptual similarity space. To
determine which features govern the organization of this
space, We then used regression techniques to predict the
coordinates of the various drawings in the perceptual space
from representational spaces derived from 5 different DNNs,
from other measures of similarity, or from both together.
Comparison of model fit and regression coefficients across
these analyses then shed light on the three core questions
raised above.

Study 1

Experiment 1 applied the general approach to understand
factors governing similarities perceived amongst drawings
of common real-world objects produced online by non-
expert participants. While line drawings lack much of the
detailed information present in photographs of objects, they
nevertheless share structural isomorphisms with their real-
world counterparts such as part-structure and global shape
(37), and people may additionally infer from such features
semantic information such as the category to which the
depicted item belongs. Perceptual judgments of similarity
may additionally be influenced by lower-level characteristics
of the image such as the "jaggedness" of contours, the density
of lines, overall size, or the orientation of the shape on the
page — properties that can be quantitatively estimated via
various machine-vision techniques. Experiment 1 measured
the perceived similarities amongst 128 sketches depicting
items from 4 different categories, then assessed how well
DNN-based features and other more transparent feature
sets can explain the resulting structures, either alone or in
combination. Figure 1 provides a high-level overview of the
workflow.
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Fig. 1. Procedure for fitting linear regression to predict human judgement
embeddings from candidate features. (A) In experiment 1, features were
constructed using part-structure, category, low spatial frequency, high spatial
frequency, and shape information. Additionally latent feature activations were
extracted from 5 different neural network architectures. The features enclosed
in the gray box were used for all models fit, with the neural network features
varying depending on which of the 5 models were being tested. Representational
dissimilarity matrices were computed from all these features and each matrix was
represented using the first few principal components. These principal components
computed from all the candidate features were used together in independent
models to predict the first and second component of human similarity judgement
embeddings. (B) In experiment 2, the process was largely the same except that
part-structure and category features were no longer applicable for abstract shapes.
Additionally, the degree of overlap in enclosed area between the shapes was
included as a candidate feature.

Behavioral methods. Participants. 85 participants were
recruited via Amazon Mechanical Turk (mTurk) using
CloudResearch (36 Female, 47 Male, 2 other; Mean age
= 38.69). Participants provided consent in accordance
with the University of Wisconsin-Madison IRB and received
compensation for their participation.

Stimuli. We used a subset of drawings collected by
Fan and colleagues (38) for our similarity judgement study.
These drawings were made in Pictionary-style reference
game where a sketcher and a guesser were simultaneously
shown the same set of 4 images. The sketcher was tasked
with drawing one of the 4 images and the guesser had to
guess which of the 4 images the sketcher was tasked to draw.
Each image belonged to one of 4 categories — birds, dogs,
cars, or chairs, and each category had 8 unique exemplars.
Additionally, in some trials, the target image belonged to the
same basic-level category as the 3 distractors leading to more
detailed drawings by the sketcher, while on other trials all 4
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images belonged to different categories leading the sketcher
to make simpler drawings. We sampled 2 drawings from each
condition (2) x category (4) x exemplar (8) cell resulting in a
final set of 128 drawings.

Additionally, in a separate experiment, each stroke
in each drawing was annotated by human-raters with a
part label thus providing fine-grained information regarding
the semantic part structure people observed within a given
drawing (39). This information was operationalized as part-
based vector representations for each drawing. The total
number of unique parts was first computed for the entire
dataset of drawings and the amount of ink and number of
unique strokes for each part were then computed. These
two sources of information were concatenated to create a 48
dimensional representation for each sketch, where the first 24
dimensions corresponded to the number of strokes allocated
to each of the 24 unique parts and the next 24 dimensions
corresponded to the amount of ink used to draw those parts.

Triplet-judgment procedure. To measure human-
perceived similarity between drawings, we had
participants complete a triplet similarity judgement
task (36) implemented using the SALMON online tool
for collecting triplet queries and fitting embeddings
(https://github.com/stsievert/salmon). On each trial,
participants viewed 3 drawings: a target positioned at the
top of the screen two options positioned below it. They were
instructed to select which of the 2 option drawings was most
similar to the target drawing using either their mouse or the
left and right arrow keys on their keyboard. If they perceived
the two options to be equally similar, they were asked to pick
one randomly.

We did not specify how participants should assess
similarity when doing this task, allowing for a variety of
potential strategies. Each participant completed 200 trials,
including 180 sampled randomly with uniform probability
from the set of all possible triplets and 20 consisting of a
fixed set of ’validation’ triplets that every participant saw.
The validation triplet trials were randomly interleaved within
the random triplet trials (Figure 2) and were used to estimate
mean inter-subject agreement for the task. Based on prior
work using this paradigm, participants with a mean response
time less than 1500ms were excluded from any further
analyses.

Computing candidate image representations. For all
sketch images, we estimated low-dimensional embeddings
that capture similarity structure apparent in (1) human
perceptual judgments from the triplet task, (2) internal
activation vectors from the deepest fully-connected layers
of the five DNN models, and (3) vectors derived from
alternative methods for expressing similarity structure in
sketches. We refer to the vector spaces from neural networks
and other techniques as candidate image representations,
as each captures structure amongst images that may aid in
predicting the perceptual similarities expressed by the triplet-
based embeddings. Here we briefly describe the methods
used for each candidate representation.

Similarity judgement-based embeddings. From

target

target

target

Which drawing is more
 similar to the target?

target

target

target

Random triplets 
(90% trials)

Fixed triplets 
(10% trials)

. . .

. . .

. . .

. . .

. . .

. . .

Fig. 2. Structure of the triplet similarity judgement task. Each participant (here
represented with different colors) completed 200 trials, indicating which of two
options was most similar to a target drawing in each trail. 180 trials sampled triplets
randomly from the set of all possible triplets. The remaining 20 were ’fixed’ triplets
judged by all participants. Fixed and random triplets were interleaved with a different
random ordering across participants.

the full set of triplet judgments, an ordinal embedding
algorithm was applied to situate all 128 sketches within
a low-dimensional space such that Euclidean distances
amongst points minimize the crowd-kernel loss on the triplet
data. (40). The optimal dimensionality was chosen by
fitting embeddings in an increasing number of dimensions,
evaluating each on their ability to predict human judgments
in held-out validation triplet trials, and choosing the lowest-
dimensional solution showing hold-out performance equal to
inter-participant agreement on these trials. The results was
a 2D embedding shown in Figure 3A that predicted human
decisions for held-out items with accuracy of 72.70%,
comparable to inter-participant agreement of 73.10% (one-
sample t-test, p = .62) for the same triplets.

Neural network feature activations. Neural network
features were extracted using the THINGSVision Python
Toolbox (41) and focusing on 5 different DNNs including (1)
AlexNet, a convolutional neural network (26) that was one of
the first to achieve near human-level performance at image
categorization; (2) VGG-19 (42), a deeper convolutional
neural network with 19 layers; (3) ResNet-18, an 18-
layer convolutional image classifier that additionally employs
’residual’ connections to ensure that each layer learns new
structure relative to the preceding layer; (4) The Vision
Transformer (ViT) (27), a (non-convolutional) Transformer-
based neural network (43) trained for image classification;
and (5) CLIP-ViT, a multimodal variant of the vision
transformer trained on a large dataset of image-caption pairs
using a contrastive loss that maximizes the similarity between
valid pairs and minimizes the similarity between invalid
pairs.

Models (1)-(3) utilize the well-established convolution
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Fig. 3. Visualization of the locations of (top) line drawings and (bottom) abstract
shapes along the first and second principal components computed from human
similarity judgements. In the top panel, drawings of living objects are separated
from non-living objects along dimension 1.

operation, where a shared set of weights is broadcast to
different parts of the input tensor, enforcing an inductive
bias toward spatial invariance. In convolutional models,
early units with narrow receptive fields acquire simple visual
feature ’filters,’ which give way with greater depth to units
that encode more complex features across broader receptive
fields. These properties mirror some aspects of the human
ventral visual stream, with some researchers suggesting they
provide useful tools for understanding the primate visual
system (13, 18). The three variants we studied differ in two
respects. First, (2) and (3) possess many more convolutional
layers (ie are deeper) than (1), an architectural difference that
can lead to better overall performance and a greater level
of abstraction. Second, (3) possesses ’residual’ connections
that allow information from earlier layers to ’skip ahead’

to deeper layers so that learning in the intervening layer
is driven primarily by error gradients unexplained by the
preceding layer. While the effects of these architectural
differences on multi-way image categorization has been well
documented in the computer sciences, prior work has not
considered whether they likewise affect a model’s ability
to capture human-like perceptual structure amongst abstract,
out-of-distribution images like sketches.

Models (4) and (5) discard convolutional structure and
instead utilize a transformer architecture (43) borrowed from
the world of natural language processing. Transformers
replace convolutional operations with an attention mecha-
nism that represents each image patch as a weighted blend
of representations of other patches, iteratively performs
this operation until a classification of the input image’s
category has to be made (27). Weights governing these
representations, including weights on the relevant similarity
metric, are all learned via gradient descent on error.
Unlike convolutional models, units in transformer models
do not locally encode a spatially-bounded part of the
image—instead all units can potentially encode information
from all regions of the image at once. This difference
allows transformers to develop remarkably flexible and
context-sensitive internal representations, while performing
exceedingly well on a variety of benchmark tasks in machine
learning, but with little clear connection to the organization
of visual processing streams in the brain. While some
have addressed the relevance of the differences between
convolutional and transformer vision models in modeling
human vision (44), few have tested these models on abstract
stimuli that nevertheless convey semantic information such
as line drawings. The critical difference between (4) and (5)
is not in architecture but in training objective. While (4) is
trained to minimize categorization error, model (5) is trained
to maximize the similarity between a visual representation
of the image and ’semantic’ natural-language representation
of a text-description of the image while also minimizing
the similarity to all other possible text-descriptions—an
approach known as ’contrastive image-language pretraining’
or CLIP.

To extract model internal representations, each drawing
was first transformed to a standard 224x224 size. Since the
drawings are grayscale and most models expect a 3D tensor,
the same 224x224 image of grayscale values was copied and
stacked 3 times as is standard practice. Each image tensor
was applied to the model input layer and we recorded the
activation vectors arising in the final hidden layer for the
classification models and from the image-encoding layer
for the CLIP-based model. Given the broad differences
in architecture and optimization techniques, we expected
to observe quantitative and qualitative differences in the
structure encoded by vectors from different models. The key
question was whether these structures also vary in how well
they capture human perceptual representations.

Other candidate representations. Finally, for each
image we also computed candidate representations using 5
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alternative techniques taken from cognitive psychology and
machine vision literatures. Each expresses a different kind
of structure that might reasonably govern human perceptual
decisions for these stimuli. They include:

Category vectors: People rapidly and automatically
discern the basic-level semantic category to which sketches
of common objects belong, a tendency that may influence
the degree to which the sketches are perceived/judged as
similar. Since each drawing in our dataset belonged to one of
4 basic-level categories (dog, bird, car or chair), we captured
this information by simply representing each drawing as a
four-element one-hot vector indicating to which category
it belonged. If observers heavily weight the recognized
category of a drawing in determining similarity over other
visual properties of the image such as shape or ’style’, this
feature should reliably predict human similarity judgements.
Note that, even though four of the five DNNs we consider
were trained on image classification, it is not clear whether
the representations they acquire will capture such structure,
for two reasons. First, the output labels employed in
this work denote classes more specific than the basic-level
categories that govern non-expert visual classification in
people–for instance, the classifier must assign different labels
to different breeds of dog, rather than a single common label
to all varieties of dog. Second, the classification models were
trained only on photographs, and it is not clear whether the
image features they acquire will extend to capturing basic-
level category information about sketches.

Part vectors: Beyond basic-level categories, people also
discern the part structure within objects (37, 45). Indeed,
classic structural descriptive theories have posited that visual
representations are built from the constituent parts that make
up an object (46). Furthermore, people are capable of
ascribing meaningful labels to the constituent parts (34).
To capture the part-based knowledge that people possess,
using the part annotation information in each drawing,
we constructed part-based feature vectors as described in
Mukherjee et al. (2019)(39). Each drawing was represented
using a 48-dimensional vector containing information about
(1) the number of strokes and (2) the amount of ink allocated
to each of the 24 unique part labels represented in the dataset.

Hu invariant image moments: People may judge two
sketches to be similar if they possess an similar overall shape,
even if that shape varies in its orientation, its size and location
on the page, or the viewing angle(47–49). Machine vision
offers a variety of techniques for quantifying shape similarity
among black-and-white line images in a size-, location-
, and orientation-invariant way. Since our stimuli were
2D sketches, we adopted a technique for estimating shape-
similarity in an affine-invariant (i.e., rotation-, translation-,
and scale-invariant) manner. Specifically, we computed Hu
image moments for each drawing (50) using the openCV
library. Hu moments, specifically, are a set of 7 numbers
that combine simpler image moments, which in turn represent
weighted intensities of the pixel values in an image based on
where on the canvas the pixel is located.

High and low spatial frequencies: Observers might be

sensitive to both the overall global shape of the drawings or
the local details within each drawing when assessing their
similarity. To capture these qualities we computed the fast
Fourier transform of each drawing and and created low and
high-pass filter variants of the drawing by either setting the
high or low frequencies of the drawing in the frequency-
domain to 0 and reversing the transformation. This resulted
in images that preferentially highlighted either global shape
(low-pass) or local details (high-pass). We then flattened
these image tensors and treated them as vectors. If people
reliably use global shape or local details to make similarity
decisions, then distances between these vector spaces should
be predictive of their decisions.

Dimension reduction. Using the different representa-
tional bases outlined above, we computed representational
dissimilarity matrices (RDM) by computing the pairwise
distances between each of the 128 drawings. We used
Euclidean distances for the similarity judgement embeddings
as this is the metric that is optimized by the ordinal
embedding algorithm. The remaining RDMs, save for one,
encoded cosine dissimilarities between pairs of items in each
vector space. The exception was the RDM for Hu image
moments, which were computed using the following standard
distance function D -

D(X,Y ) =
6∑
i=0

∣∣∣∣ 1
HX
i

− 1
HY
i

∣∣∣∣
where X and Y are the 2 images being compared and Hi

refers to the ith log-transformed Hu moment for that image.
Finally, in addition to the RDMs themselves, we

computed low-dimensional embeddings of the resulting
distances using singular value decomposition. Specifically,
from the RDMs computed for each vector space, we
extracted the first three singular vectors weighted by their
respective singular values as a three-dimensional image
representation approximating the distances expressed in the
original high-dimensional space. These low-dimension
approximations were then used in regression analyses to
determine which candidate vector spaces best explain human
perceived similarity. For DNN-based representations, the
3D embeddings captured 75% of the variance in the original
RDM on average; we used the same dimension for reductions
of other vector spaces to ensure that no single representation
was over-represented in the downstream analyses.

Results of study 1. How well do DNN-based embeddings
explain human perceptual similarity? To answer this
question we first used linear regression to fit models
predicting the coordinates of images along two orthogonal
dimensions in the human-perception based embeddings from
coordinates in each DNN-based embedding. To get the
target values for regression, the 2D embedding shown in
Figure 3A was subjected to a singular-value decomposition,
extracting two singular vectors and weighting each by the
respective singular value. This had the effect of rotating the
embedding to ensure that first component aligned with the
direction of greatest variation and that the second component
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Fig. 4. Sketch embeddings in the regression analyses. The top right panel shows
the human-based embeddings rotated to ensure the two components that constitute
the dependent measure in the regressions are orthogonal to one another. Within
each remaining row, the left plots show the 3D embeddings generated from each
DNN, and the right plot shows the predicted coordinates of the sketches within the
human-based space after fitting regression models.

was orthogonal to the first. We then fit separate regression
models to predict each sketch’s location along each of these
two orthogonal dimensions from their coordinates in each 3D
DNN-based embedding, including all interactions amongst
the three components. The results are shown graphically in
Figure 4.

The top right panel shows the human-based embeddings
as rotated by the SVD technique, with colors indicating
the semantic category to which each item belongs using
the same scheme shown in Figure 3. The remaining rows
show the 3D embedding generated from the corresponding
DNN (left) and the predicted coordinates of each image
in the human perceptual space after fitting the regression.
The arrows indicate the proportion of variance in pairwise
distances from the true human embeddings explained by the
predicted embeddings. All regression fits were statistically
highly reliable (p < 0.001 for all contrasts against null
hypothesis), indicating that all architectures capture structure
that is non-arbitrarily related to the similarities that people
perceive. To understand how much variation in the pairwise
distances from the original human-based space is explained
by predicted coordinates from the regressions for each model,

we took the square of the Procrustes correlation between
predicted and true spaces. These are the values shown
as r2 in Figure 4. The different models varied somewhat
in this metric, but the the CLIP-trained transformer model
captured the most variance (r2 = 0.84), reliably better than
the next-best ResNet model (p < 0.001). By observation the
reason seems clear: human-based judgments strongly cluster
sketches by semantic category, and such categories are more
clearly expressed in the CLIP-based model embeddings than
any other model. Interestingly, the transformer architecture
trained to classify images–ie, without CLIP–did not cleanly
separate semantic classes, and showed the worst accuracy
predicting human-based embedding coordinates.

Feature R2 p-value

category .91 <.001
parts .80 <.001
low freq. spatial .22 <.001
high freq. spatial .17 <.001
Hu moments .16 <.001

Table 1. The amount of variance in human perceived similarity in drawings
explained by each non-DNN candidate feature. For each feature, 2 independent
regression models were fit to predict the first and second principal coordinate of
the human similarity embeddings. R2 values were computed by first computing a
Procrustes correlation between the true and predicted coordinates and computing
its squared value.

Predicting human similarities from other features. We
next considered how well the other candidate representations
fared at predicting coordinates in the human-based space,
applying the same procedure but with the 3D embedding
coordinates (and their interactions) from each candidate
space as the predictors. Squared Procrustes correlations
between predicted and true coordinates are shown for
each regression in Table 1. All candidates spaces, taken
individually, accounted for significant variance in the human
perceptual space, but the amount of variance differed
radically. The category-based vectors on their own accounted
for a remarkable 91% of the variance in human-based
distances–more than the best-performing DNN. Part-based
vectors explained 80%, about as much as the CLIP-based
transformers. The other metrics each individually explained
a relatively smaller amount of variance. Like the DNN
analysis, these results suggest that human judgments are
dominated by information about semantic category.

Which methods account for unique variance in human-
perceived similarities? Since all candidate representations
independently explain some variance in human perceived
similarities, a further question is whether a given candidate
representation accounts for reliable variation after other
representations are taken into account. To answer this
question, we again fit regression models predicting human-
based coordinates, but including as predictors the 3D
embedding coordinates from one of the DNNs and from each
of the other embeddings. We fit one such regression for each
DNN type, each then including 18 different predictors (the
3 DNN components and 3 each from category, part, Hu-
moment, low-frequency, and high-frequency embeddings).
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Due to the large number of independent variables, we fit
models using only simple effects. For each predictor, we
evaluated whether its inclusion improved model accuracy
more than expected under the null.
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Fig. 5. Regression coefficients from Experiment 1. Rows shows t-values on
regression coefficients predicting components 1 (left) or 2 (right) of the human
embeddings from a combination of handcrafted features and neural network
features extracted from five different architectures. Asterisks indicate coefficients
that reliably improve model fit with p < 0.01*, p<0.01** or p<0.001***. DNN=Deep
neural network; parts = part-based vectors; Hu = Hu moments; HSF = high spatial
frequency; LSF = low spatial frequency.

Figure 5 shows t-values on regression coefficients from
these analyses, with asterisks indicating which coefficients
reliably reduced prediction error over and above inclusion of
other predictors. For both components of the human-based
embeddings, coefficients on the category-based embedding
space are largest, but other spaces also received coefficients
that were reliably non-zero, including embeddings from all
five DNN-based representations. Thus, at least considering
simple effects, DNN representations do appear to capture
some elements of structure relevant to human similarity
judgments over and above structure captured by category and
by other, simpler metrics. How much additional structure?
We compared the fits of models fit only using the non-DNN-
based embeddings to those using all such features plus the
DNN-based embeddings, for each architecture. Embeddings
from all architectures explained significant variance over and
above the other features on at least one dimension (p < 0.05
for all contrasts), but in all cases the amount of additional
variance explained was at most 1%. Thus, while these
models do appear to capture some unique aspects of human-
perceived similarities, such influences appear to be relatively
small.

Are these results an artifact of dimension reduction?
The predictors in the preceding regressions were low-
dimensional embeddings computed from very high dimen-
sional representations. Is it possible that the various
candidate representations would better explain human
judgments without such reduction? To answer this question,
we evaluated how well similarities encoded in the original
RDMs, from both DNNs and other metrics, could predict

human decisions in the triplet-judgment task. Recall that
each human participant judged a set of 20 ’validation’
triplets, which in turn were used to measure the mean inter-
subject agreement in the task and to find the best embedding
dimension for characterizing human-perceived similarities.
To evaluate how well the original vector spaces explain
human perceptual decisions for sketches, we predicted
responses on the validation triplets from each candidate space
by simply looking to see, within the corresponding RDM,
which of the two option sketches was least dissimilar to the
target sketch in the full high-dimensional space. For each
candidate representation, the predicted responses were then
compared to corresponding human decisions and counted as
"correct" when these matched and incorrect otherwise.
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Fig. 6. Accuracy of predicted human similarity decisions for drawings (A) and
shapes (B). Row 1 shows the predictive ability of psychologically motivated
candidate features. Row 2 shows the predictive ability of neural network features.
Row 3 shows the predictive ability of estimated human similarity judgement
embeddings from DNN and non-DNN candidate features and true human similarity
judgement embeddings (gray background), all models’ performance was statistically
comparable to inter-subject reliability. Error bars indicate 95% confidence intervals.

Figure 6A top and middle show the results. The
dotted horizontal line indicates the mean inter-subject
agreement, which represents an upper limit on how well any
predicting model can do. While all candidate neural network
representations predict human responses better than chance,
no representation on its shows predictive accuracy equal to
the inter-subject agreement. In other words, none of the
high-dimensional representations, taken individually, fully
explains the similarities that humans perceive amongst these
sketches. Amongst DNNs, the CLIP-trained transformer
showed better predictions than other models, consistent with
the earlier regression results. Amongst non-DNN features,
the part-based vectors showed highest predictive accuracy,
better than the category-based vectors. Note that, while
part- and category-based vectors capture similar structure,
the category-based RDMs are derived from one-hot vectors,
and so do not express any within-category structure, nor any
broader structure across categories.

To understand how these results relate to the earlier
regression analyses, we conducted a similar analysis on the
predicted coordinates of the sketches generated from the
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regression models fit using embedding coordinates from one
DNN plus each other candidate representation (all treated
as simple effects as described above). Each regression
model generated predicted coordinates for every sketch in
the 2D human-based space and from these we computed
the corresponding predicted Euclidean distances between all
image pairs. The resulting RDM was then used to predict
human decisions on the validation triplet set. The results are
shown in Figure 6A (bottom) for predictions using each DNN
embedding together with embeddings from other candidate
representations. All models predicted human decisions at
a level of accuracy similar to the inter-subject agreement.
Thus low-dimension approximations of structure encoded by
each DNN, when combined with comparable approximations
from other spaces, are sufficient to explain human-perceived
similarities amongst these stimuli.

Discussion of Study 1. Study 1 suggests that human
similarity judgments for sketches of real objects are largely
governed by semantic category membership: regression
models built on category-based embeddings explained 91%
of the variance in human-derived similarity spaces. The
internal representations in DNNs capture this perceived
structure to the extent they cluster images by semantic
category. As shown in Figure 4, each model expresses
at least some category structure, but the transformer
architecture trained with CLIP shows the clearest clustering
by category and accordingly yielded the best predictions
of human-perceived structure amongst the different neural
networks. While DNNs and other candidate representations
each capture some unique variance in human perceptual
structure, the amount of variance captured is much smaller
than that explained by semantic category membership.
These conclusions do not hinge on the low-dimensional
compression of the core representations, since predictions of
human decisions on the triplet task from full-dimension DNN
spaces (a) were better for CLIP than other models and (b)
did not fully explain human decisions. Instead, regression
models that combined low-dimensional DNN embeddings
with low-dimensional information from other metrics all
predicted such decisions as well as possible given the level
of inter-subject agreement.

These observations accord with the prior results of
several studies (34, 51, 52), whose studies of perceived
similarities amongst photographs of objects likewise found
that such structure is dominated by semantic category
membership. The current work shows a similar pattern even
for abstract, out-of-distribution stimuli like sketches, and
including a range of alternative representational structures
beyond propositional features listed by people. Perhaps
more interestingly, the results show that the CLIP training
procedure, which constrains learning by ensuring that
images and natural language descriptions receive similar
representations when they denote similar context, leads to
much clearer emergence of semantic category structure, even
for abstract sketch images.

The contrasting behavior of the vision transformers
with/without CLIP training is interesting because it suggests

that the good performance of the CLIP-trained model does
not arise from the transformer architecture per se. Indeed,
the transformer trained on classification–the same task used
with the convolutional models–showed worse ability to
explain human-perceived similarities. Since CLIP training
encourages the model to represent images and their natural-
language descriptions as similar, it may be that this constraint
leads to improved ability to capture semantic similarity
structure in sketch images. This possibility is only tentative,
however, since there are many other differences between the
two models, most notably the corpora on which they were
trained.

A remaining question concerns the degree to which
our behavioral results reflect, not the representation of
perceptual structure within visual processing systems, but
the human tendency to rely instead on rich semantic
knowledge about the items depicted. It may be that semantic
category membership dominates the similarity space simply
because, once participants recognize a sketch as a member
of a familiar class, they retrieve names and a range of
other familiar properties common to the category, and
base their similarity judgments on these inferred semantic
characteristics rather than on visual similarity alone. If so,
the preceding results may not shed much light on the degree
to which DNNs and other metrics capture visual structure
independent of this semantic information. Experiment 2 tests
this possibility.

Experiment 2

Experiment 2 followed the same design as Experiment
1, but instead using line drawings depicting abstract,
unrecognizable shapes. If human similarity judgments for
object sketches are largely driven by semantic features
retrieved when the stimulus is recognized, we might expect
quite different results for such stimuli. The items we chose
were a set of 64 line drawings devised by Schmidt and
Fleming (53), which show bounded but visually complex
shapes that are not recognizable as real-world objects (see
Figure 3B). The shapes were designed to fall into both
broader and finer-grained groups on the basis of their visual
similarity alone, and so provide a useful contrast case for the
results in Experiment 1.

Methods for study 2. Participants. 40 participants
were recruited via Amazon Mechanical Turk (mTurk)
using CloudResearch (14 Female, 26 Male; Mean age =
36.25). Participants provided consent in accordance with
the University of Wisconsin-Madison IRB and received
compensation for their participation.

Stimuli. The dataset consisted of 64 unique shapes,
each derived from one of 4 base shapes (53). Within
a family of base shapes, each exemplar varied in low-
level perceptual properties such as whether the contours
were smooth, angular, or corrugated. Thus, the dataset
had systematic perceptual regularities in addition to within-
family variation. To standardize the images, each shape was
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extracted, made into a grayscale contour, and positioned in
the center of a 525x525 pixel canvas.

Procedure for triplet judgement task. The task was
identical to that described in Study 1, but using the shape
stimuli in place of sketches. Participants with a mean
response time of over 1500ms were again excluded from
further analyses. The same algorithm was used to situate
the 64 items in a 2D Euclidean space to minimize the
crowd-kernel loss on the triplet judgment dataset. The
resultant embeddings, shown in Figure 3B, predicted human
judgments on a held-out validation set with 73.76% accuracy.

Candidate representations. Study 2 used the same
techniques as Study 1 to derive RDMs and corresponding 3D
embeddings for the 64 items from each DNN and from the
additional candidate representational similarity spaces, with
two exceptions. First, since the stimuli do not correspond
to familiar categories of items and do not possess familiar,
identifiable parts, we did not include category- or part-
based vectors. Second, since each image is a bounded
figure typically perceived as an object situated against a
background, we included one additional measure of visual
similarity, namely shape overlap. For this metric, we filled
the area within the contour for each shape with a value of
1 and the area outside the contour with a value of 0, then
computed overlap as:

O(X,Y ) =
∑

(X&Y )∑
(X | Y )

...where X and Y are flattened binary bitmaps of the 2
images being compared. Thus the candidate representations
in this dataset included RDMs and associated 3D embeddings
for the 5 DNNs and for Hu moments, low-frequency
reconstructions, high-frequency reconstructions, and shape
overlap. The central questions was whether and how these
different spaces could explain human-perceived similarities
amongst these unfamiliar, non-meaningful shape drawings.

Results of Study 2. To assess how well the various DNN
representations explain human-perceived similarities, we
again conducted regression analyses predicting coordinates
in the human similarity space from the 3D embedding
coordinates derived from each model, including all
interaction terms. The results are shown in Figure
7. The human-derived embeddings (top right) clearly
capture the ’family’ groupings intended by the designers
(dot colors), an organization reflected to varying degrees
across the embeddings from different models. Regressions
predicting human-based coordinates from the embeddings
all account for significant variange (p < 0.001 for all
contrasts to null), with the CLIP-trained transformer again
accounting for the model (79%) and the VGG-19 model
coming a near second (76%). As with study 1, the
transformer architecture trained without the CLIP loss was
the worst-performing model, accounting for 64% of variation
in human-perceived similarities. Regressions predicting
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Fig. 7. Shape embeddings in the regression analyses. The top right panel shows
the human-based embeddings rotated to ensure the two components that constitute
the dependent measure in the regressions are orthogonal to one another. Within
each remaining row, the left plots show the 3D embeddings generated from each
DNN, and the right plot shows the predicted coordinates of the sketches within the
human-based space after fitting regression models.

human-based coordinates from the alternative spaces all
accounted for significant variance (p < 0.001 vs. the null)
but did not fare as well as the DNN embeddings, with Hu
moments accounting for the most variance (63%), followed
by low-spatial-frequency embeddings (48%), shape overlap
(41%), and high-spatial-frequency (34%).

Table 2 shows the corresponding fit values for
regressions using each alternative embedding space as the
predictor. While each alternative again accounted for
significant variance in the target space (p < 0.001 vs. the
null), no alternative space accounted for as much variance
as the better-performing DNNs. Hu moments on their own
explained 63% of the variance in the human-derived space,
about the same as the worst-performing DNN.

To determine whether the various representation spaces
capture unique aspects of human-perceived structure, we
again combined coordinates from each DNN embedding
with those from alternative candidate representations,
investigating only simple effects. These results are shown
in Figure 8. While all metrics account for significant
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Fig. 8. Regression coefficients from Experiment 2. Rows shows t-values on
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unique variance on at least one target dimension, DNN
embeddings attracted the largest coefficients in the regression
model, followed by the shape-similarity measure captured
by Hu moments. Table 3 shows the change in r2

observed when contrasting models fit with/without the DNN-
based embeddings. All five explained significant additional
variance beyond Hu moments and other spaces. The amount
of unique variance explained by each was an order of
magnitude larger than observed in Study 1, ranging from 11%
to 29% across the two dimensions. In this analysis, ResNet-
18 and the CLIP-trained transformer each accounted for the
most additional variance.

Feature R2 p-value

Hu moments .63 <.001
high freq. spatial .34 <.001
low freq. spatial .48 <.001
overlap .41 <.001

Table 2. The amount of variance in human perceived similarity in abstract shapes
explained by each non DNN candidate feature. For each feature, 2 independent
regression models were fit to predict the first and second principal coordinate of the
human similarity embeddings. R2 values once again correspond to the squared
Procrustes correlation.

Finally, to assess whether these results reflect the
dimension reduction step, we again used the original RDMs
for each vector space to predict human judgments on the
validation items from the triplet task. As with Study 1,
we evaluated the predictions from each representational
space considered independently, and also from the 2D space
generated by predictions of the regressions models that
combine DNN and other feature embeddings. The results are
shown in Figure 6B. Relative to the results with sketches, the

Feature ∆R2 F -statistic p-value

human judgements component 1

VGG-19 .11 17.84 <.001
ResNet-18 .16 35.55 <.001
AlexNet .11 18.25 <.001
ViT .12 21.29 <.001
CLIP-ViT .17 45.21 <.001

human judgements component 2

VGG-19 .16 10.14 <.001
ResNet-18 .29 19.42 <.001
AlexNet .22 13.71 <.001
ViT .19 10.51 <.001
CLIP-ViT .28 20.77 <.001

Table 3. The amount of unique variance explained by DNN features in ensemble
models with all other candidate features. Unlike in the case of drawings, DNN
features explain a larger part of the variance.

DNN feature spaces alone show higher accuracy predicting
human judgments for these non-meaningful stimuli, though
they do not reach the ceiling level defined by inter-
subject agreement. Interestingly, without data reduction and
parameter fitting via regression, the CLIP-trained transformer
performs worst among the DNNs, suggesting that the very
high dimension native space may encode much information
irrelevant to human perception.

Predictions from Hu moments perform as well as the
worst-performing DNN embeddings, suggesting that human
judgments are, unsurprisingly, largely driven by overall
similarity in shape for these stimuli. Embeddings computed
from high-frequency spatial information also do relatively
well. Note that regressions based on embeddings of the
high-spatial-frequency vectors explained the least variance
in the human-based embeddings. The contrasting pattern
suggests that these vectors contain information relevant
to human judgments that is lost by the compression to
three dimensions. For instance, for these stimuli such
judgments may be partly informed by patterns in high spatial
frequencies such as the rounded, jagged, or square contours
that form each shape.

Discussion of Study 2. Study 1 suggested that, for
drawings of recognizable objects, semantic information dom-
inates human similarity judgments, and DNN representations
capture little additional structure. Study 2 suggests that,
when object category (and other semantic information)
is not available to inform similarity judgments about
drawings, DNNs can capture nontrivial aspects of human-
perceived similarity not expressed by the other metrics we
considered. While human perceptual judgments for these
items seem strongly informed by shape similarity, all DNN
representations accounted for significant additional variation
beyond Hu moments, the overlap metric, and spaces derived
from high and low spatial frequency information. Moreover,
regression analyses placed the largest coefficients on
DNN-based predictors, which reliably improved predictive
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accuracy over and above all other feature types.
The best-performing DNN-based embeddings were

again those computed from the CLIP-trained transformer
model, while the worst-performing were again those
computed from the classification-trained transformer. This
pattern echoes the results of Study 1, with interesting
implications. As noted earlier, CLIP encourages networks
to assign similar internal representations to images and
their natural-language descriptions. When the sketch
images depict real, recognizable objects, it seems reasonable
to suppose that such training promotes the discovery of
semantic-category-like internal representations for these
items, since such structure will be expressed in the natural-
language descriptions of images. In Study 2, the stimuli
do not correspond recognizable items; no such items
have appeared in the model training environment; and
no natural-language descriptions exist to aid in organizing
their structure. Nevertheless the CLIP-trained transformer
performed markedly better than the classification-trained
transformer, and the shape-similarity-based families built by
design into the stimuli are clearly captured by the CLIP-
based internal representations. This suggests that CLIP
training may aid in more than just capturing semantic
similarities amongst familiar visual stimuli–perhaps such
learning allows the system to find a representational basis
that more accurately captures human perceptual similarity
even for completely novel shape stimuli. That is, perhaps the
features that support perception of visual similarity for novel
objects are precisely those that best promote representation
of semantic structure from vision for familiar objects.

General Discussion
From early in life and without special training, human
beings, perhaps alone among animals, can recognize abstract
depictions of objects in the world. Theories of human
vision are challenged to explain such abilities: what
computational or information-processing mechanisms do
human minds possess that support such abstraction? This
paper considered whether contemporary deep neural network
models, independently or together with other representational
spaces, provide an answer to this question. While prior work
has investigated how deep neural network features might
contribute towards explaining patterns of human similarity
judgements (34, 51), these studies were conducted in the
domain of real-world photographs and efforts that have
looked at the performance of deep neural networks on
simple silhouettes (31, 54) or simple drawings (55) haven’t
contrasted DNNs to simpler feature spaces, or tested a
suite of models with sufficient variance in architecture and
training methods. For both sketches of real objects and
line drawings depicting unrecognizable shapes, we used
human behavior in a triplet-judgement task to map a low-
dimensional space capturing perceived similarities amongst
stimuli. We then assessed whether internal representations
extracted from various DNNs can explain the resulting
structure. Broadly, our results suggest that the utility
of DNN-based representations for understanding human

similarity judgments hinges on whether the stimuli depict
recognizable objects.

For sketches of real items, we found that human
similarity judgments were overwhelmingly driven by the
depicted item’s basic-level semantic category. Vector-space
representations based only on basic-level category explained
91% of the variance in inter-item distances from the human
embedding space. While features extracted from each DNN
architecture did account for statistically significant additional
variance beyond category and other candidate feature spaces,
the amount of additional variance was 1% or less. Moreover,
the DNN-based representations that independently explained
the most variance in human-perceived similarity were those
that most cleanly separated stimuli by semantic category.
Taken together these observations suggest that structure
encoded by DNNs does not add greatly to an understanding
of human similarity judgments for drawings of real objects,
since such judgments mainly express semantic category
structure.

For drawings of unrecognizable shapes, however, DNNs
capture important information not expressed by the other
metrics we considered. Unsurprisingly, human judgments
are partly driven by overall similarity in shape, a property
captured by Hu moments. Yet after regressing out this
structure and other purely visual measures (including shape
overlap and similarity in low- and high-spatial-frequency
information), DNN-based representations still explained
an additional 11-29% of variance amongst inter-item
distances in the human-derived similarity space. Considered
independently, the best-performing DNN accounted for 79%
of the variance in such distances, substantially more than
the best-performing non-DNN-based representations (Hu
moments, accounting independently for 63% of variance).
That is, in contrast to results with sketches of real objects,
no alternative representation fared better at predicting
human-perceived similarity than did the best-performing
DNN (the CLIP-trained transformer). Thus, when no
semantic information about the stimulus is available to guide
judgments, DNN-based representations generally appear
to better capture human-perceived structure than do other
measures.

With these observations in mind, we can revisit the
three questions raised in the introduction and the answers our
results suggest.

1. Are the internal representations/features acquired
by DNNs sufficient, either alone or in combination with
other common expressions of visual structure, to explain the
similarities that people detect amongst abstract depictions
of objects (such as line drawings)? For neither dataset
did DNN-based representations alone capture all of the
information needed to model human similarity judgments.
When low-dimensional embeddings of DNN-based structure
were used to predict human-based embeddings, the best-
performing networks captured a remarkable amount of
variance for both sketches (84%) and shapes (79%).
Without compression and regression, raw distances in DNN
representational spaces did not fully predict human decisions
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on the triplet task. Only when low-dimension DNN
embeddings were combined with other non-DNN-based
features in a regression model was it possible to predict
human decisions on triplet judgments at ceiling level for both
datasets.

2. Do the internal representations/features acquired
by DNNs merely recapitulate other better-understood kinds
of visual features, or do they capture aspects of perceptual
similarity beyond such features? For both datasets, DNN-
based representations accounted for significant additional
variance when predicting coordinates in the human-derived
similarity space. The amount of additional variance
explained, however, was quite small for sketches and
substantially larger for novel shapes. For sketches, simply
knowing the category to which an item belongs carries a great
deal of information about the similarity decisions people will
make, and it is not clear that DNN-based representations
capture much useful information beyond category, especially
given their opacity. In contrast, for novel shapes, no
alternative representational basis explained as much variation
in human decisions as did the best-performing DNN, and
all DNNs explained non-trivial additional variance in the
human-derived distances. Thus, when semantics is removed
from the table, DNN-based features express aspects of human
perceptual structure difficult to capture in simpler techniques.

3. Do different model architectures and/or training
procedures offer different answers to these questions? Our
results suggest that the training task may matter more than
the model architecture. For both sketches and shapes, the
best performing model was the CLIP-trained transformer,
while the worst-performing model was the classification-
trained transformer. Convolutional models, all trained only
on classification, fell somewhere between these poles. The
contrast is instructive as it suggests that good performance is
not attributable to the transformer architecture alone. Instead
the CLIP training procedure, which promotes affinity in
representation between images and their verbal descriptions,
promotes representations of sketches that better capture
semantic category structure (and so better explain human
similarity decisions) and representations of novel shapes that
better express human-perceived similarities amongst these.

Broader implications. The CLIP training procedure pro-
motes acquisition of common latent representations that
jointly support visual and natural language representations.
In this respect it resonates with a well-known perspective
on semantic representation in the mind and brain, namely
the hub-and-spokes approach(56–59). The hub and spokes
model proposes that different receptive and expressive
information channels in the brain–vision, language, action,
hearing, etc–communicate with one another via a shared
representational "hub", which serves to mediate interactions
amongst the various modality-specific "spokes." In so doing,
it acquires distributed representations that are shaped by
patterns of high-order co-variation across modalities and
over time(60, 61), which in turn express conceptual or
semantic similarity relations. CLIP-trained transformers
capture this idea for vision and language by enforcing a

learning constraint so that images and language with similar
semantic content receive similar internal representations.
That is, the distributed image representations acquired in
a CLIP-trained transformer reflect information from both
vision and language, and in this sense are analogous to the
representations arising in the proposed cross-modal semantic
hub.

The concordance is interesting for two reasons. First,
the hub-and-spokes model has proven useful for understand-
ing a range of phenomena in the cognitive neuroscience of
semantic memory, including patterns of semantic dysfunction
from brain injury (56, 57, 62), the large-scale connectivity
of the cortical semantic network (61, 63, 64), functional
imaging of neuro-semantic processing (64–66), and results
of transcranial magnetic stimulation (67). The observation
that a loosely parallel technique for training DNNs likewise
improves both semantic representation and agreement with
human similarity judgements provides an avenue for
connecting contemporary machine-learning models to a
scientific framework useful for understanding this important
aspect of human cognition.

Second, the CLIP training procedure yielded better
agreement with human-derived similarities even for novel
object shapes that do not denote recognizable entities. That
is, encouraging agreement between vision and language
representations of real stimuli promoted acquisition of visual
features that better capture human perception generally.
This suggests that the visual features governing human
perceptual similarity may be precisely those that best aid,
not image classification, but distributed representations of
semantic/conceptual structure. The optimal visual basis
for generating distributed semantic representations may
differ significantly from the basis optimal for specific
item classification—in which case, DNNs trained only on
classification may provide a poor approximation of the
computations carried out in human vision.

In this work we focused on line drawings, both because
they serve as a class of stimuli beyond the standard repertoire
of deep image-classifier training datasets and because it is
possible to compute low-level image features and annotate
part-structure more easily in them relative to real-world
photographs. While our simple approaches suffice for
characterizing visual and perceived semantic structure in
sketches and simple shapes, recent advances in the automatic
computation of robust shape dimensions from generative
adversarial networks trained to generate realistic silhouettes
of objects (68) provide a promising avenue to extend our
approaches to the domain of naturalistic images. Coupled
with novel methods for image-computable part-structure
(69), future work can not only apply our methods to a
broader range of stimuli but also evaluate the performance
of DNNs trained to specifically understand finer-grained
semantic information, such as parts and scene-segmentations,
in both photographs (70, 71) and drawings (72).
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